
Hammer-io IoT Extension
Design Document

Team : sddec19-24
Client/Advisor : Lotfi Ben-Othmane

Members :
Yussef Saleh Team Leader
Matt Bechtel Chief Designer / Engineer
Brett Wilhelm Assistant Programmer / Engineer
Chakib Ahlouche Assistant Programmer / Engineer

Email : sddec1924@gmail.com
Website : sddec19-24.sd.ece.iastate.edu

mailto:sddec1924@gmail.com
http://sddec19-24.sd.ece.iastate.edu/

Table of Contents

Project Statement 2

Project Goals and Deliverables 2

Proposed Design 2

Design Specifications: IoT Deployment Service 3

Functional Requirements 3

Non-Functional Requirements 4

Design Specifications: IoT Deployment Manager 4

Functional Requirements 4

Non-Functional Requirements 4

Design Analysis 5

Hardware/Software 5

Hardware 5

Software 5

Functional Testing 6

Manual Testing 6

Automated Testing 6

Regression Testing 6

Non-functional Testing 7

Implementation Issues and Challenges 7

Conclusion 8

References 8

1

Project Statement

Our project is to extend the existing DevOps system ‘hammer-io’ (a past senior design
project) to support deployment of applications to IoT devices and also to provide basic
services for micro-services such as fail detection. We will continue working on a framework for
DevOps for Node.js that our client has previously developed.

Project Goals and Deliverables

The goal of the project, as mentioned above, is to provide a extension to the current
DevOps system, hammer-io, that will allow clients to deploy their services to the IoT device of
their choosing. As of now the system only allows deployment to Heroku, so we will have to
deliver an extension to the project that allows for deployment to IoT devices. This extension
will be in the form of the new services ‘IoT Deployment Service’ and the ‘IoT Deployment
Manager’. These new services will add on to the existing microservices architecture of the
hammer-io system, easily integrating and allowing for clients to have the option to use the
hammer-io system to push and deploy services to their desired IoT devices. The two new
services will work in conjunction to provide this functionality, with the ‘IoT Deployment
Service’ running alongside the rest of the hammer-io system in the cloud and the ‘IoT
Deployment Manager’ running on the actual IoT device.

The deliverable will be as mentioned above, the extended hammer-io system with the
new services ‘IoT Deployment Service’ and ‘IoT Deployment Manager’ added on to provide the
needed IoT deployment functionality.

Proposed Design

Our extension design for the hammer-io DevOps system will involve the creation of a
new ‘IoT Deployment Service’, and its companion (which will run on the IoT device itself) the
‘IoT Deployment Manager’, for the deployment of client code onto Linux-based IoT devices.
The existing hammer-io codebase was built using a microservices architecture, so we will
simply add another microservice and integrate it with the existing system.

To integrate the ‘IoT Deployment Service’ with the existing services, endor, koma, tyr,
and the frontend yggdrasil, we will have to extend them so that they may communicate with
our new deployment service in the same fashion they communicate with Heroku (the
deployment service currently used by hammer-io for deployment of docker containers).

When implemented, the ‘IoT Deployment Service’ will field requests from the backend
service, endor, to control a client’s deployment. To start a deployment pipeline, the client will
need to 1. Setup their IoT device so that it is running Linux and is connected to the internet, 2.
install our instance side service, the ‘IoT Deployment Manager’, and run it on a port which they
have opened to the public (or at least open to the ‘IoT Deployment Service’s’ IP). From here,
the client should go through either the UI, yggdrasil, or the CLI tyr to pass off their IoT device
endpoint (IP plus the port), the git path and credentials of the code they want to run on the
device, and the launch script for said code.

2

Once the ‘IoT Deployment Service’ has the information necessary to talk to the client’s
IoT device, the client can then kick off their deployment. Deployment will involve a request
from either yggdrasil or tyr to the backend endor, which will then make a request to the ‘IoT
Deployment Service’ to begin deployment. When the ‘IoT Deployment Service’ receives a
request it will then in turn send a request to the ‘IoT Deployment Manager’ which is running
on the client’s specific IoT device to perform the deployment-related command.

The end goal of the ‘IoT Deployment Service’ and its companion the ‘IoT Deployment
Manager’ will be to function as an enterprise deployment service, such as Heroku, but for IoT
devices.

Design Specifications: IoT Deployment Service

Functional Requirements

● Provides API for deployment requests
○ Initial Setup

■ Sets up initial communication with IoT instance, using the
credentials provided by the client (endpoint)

■ Passes clients version control credentials and the client code’s
start script to our service, ‘IoT Deployment Manager’ via HTTPS,
which is running on the client’s IoT instance

■ Once the connection is successfully set up, the ‘IoT Deployment
Service’ will set the state of the client’s instance to ‘Ready for
Deployment’

○ Deployment
■ If the instance is ‘Ready for Deployment’ the ‘IoT Deployment

Service’ will send a request to the running ‘IoT Deployment
Manager’ to tell it to pull the code and check for updates, if
there are updates, the manager will run the client’s code with
the given start script that was provided by the client

■ The ‘IoT Deployment Service’ will field a request from the ‘IoT
Deployment Manager’ to notify the client about the state of
their deployment (this notification will be passed back to the UI
or tyr for client viewing)

● Provides API for endor to acquire feedback about a client’s instance
○ Instance State

■ Information about whether the instance is running/in a healthy
state

○ Deployment History
■ Information about the deployment history of the instance, this

should include, deployment times, commit information (version)
about said deployments, user that executed said deployment

3

Non-Functional Requirements

● Usability
○ The ‘IoT Deployment Service’ API should be easy to use and should be

easily extensible if new functionality is needed
● Supportability

○ The ‘IoT Deployment Service’ should be written in NodeJS and should be
usable with (supported by) Linux systems

● Reliability
○ The service should be continuously running so that clients can control

their instances with complete reliability
○ Uptime should be 99.9% meaning that updates to it must be done in a

rolling fashion
● Security

○ The service must communicate with the client’s instance over a secure
connection (HTTPS) as sensitive information must be exchanged

Design Specifications: IoT Deployment Manager

Functional Requirements

● Provides API for deployment requests
○ Initial Setup

■ Controller exists to receive a request with the client’s
information, including git credentials and start up script for the
client’s code

○ Deployment
■ Controller exists to handle requests to kick off deployment

○ Security
■ In order for the API requests to be secure, the Deployment

Manager running on the instance needs to be provided the ‘IoT
Deployment Service’s IP address so that the manager knows that
the request to setup the instance is coming from the correct IP

● This identity check could also be done using an RSA key
pair (this is undecided as of now)

Non-Functional Requirements

● Usability
○ The ‘IoT Deployment Manager’ API should be easy to use and should be

easily extensible if new functionality is needed
● Supportability

4

○ The ‘IoT Deployment Manager’ should be written in NodeJS and should
be usable (supported) Linux IoT devices

● Reliability
○ The service should be continuously running on the IoT device, so that

clients can control their instances with complete reliability
○ Uptime should be 99.9% meaning that updates to it must be done in a

rolling fashion
● Security

○ The manager must verify the identity of the service sending the request
for deployment to it

■ This could be done through whitelisting or through signing using
an RSA key pair

Design Analysis

Our team has created a viable extension to the existing hammer-io system so that
clients using the system may deploy their code to their IoT devices in an automated fashion.
The extension relies on the hammer-io project existing microservices architecture to be able
to leverage easy integration and extensibility.

The fairly straightforward extension that we have proposed should provide the
solution to our client’s problem that he is looking for, a way to leverage the hammer-io
system to create a deployment pipeline to user’s IoT devices.

Following the previous team’s lead, our extension will provide an easy to use piece of
functionality so that user’s of the hammer-io for IoT system will be able to both automate and
simplify their deployment at an enterprise level.

Looking forward, we will continue to refine our design, thinking about the nuances of
such an extension, hopefully ending next semester with a completely functional, easy to use,
service for continuous deployment to IoT devices.

Hardware/Software

Hardware

Raspberry Pi: This will be our Linux-based IoT device for testing

Software

Mocha: Framework used for unit testing
Node: JavaScript runtime for easy building of fast and scalable network
applications
Docker: Service that will be used to containerize our services for easy testing
and deployment
Bash: Programming language used for IoT start scripts
Firebase: Real time database and backend, synchronize and store client data

5

Functional Testing

Manual Testing

Much manual testing will have to be done to verify the functionality of our
extension, because of the nature of our extension. Such a thing is a bit hard to
test using automated testing methods especially for the integration portion of
it. We will perform automated regression testing on the existing system to
make sure that our newly added pieces to endor, koma, and yggdrasil do not
break any functionality, but beyond that we will have to go through the use
cases of our extension manually to verify that the functionality of the system is
what is expected. This manual testing will involve standing up the hammer-io
system, with our extensions active, and performing a deployment onto an IoT
device. Of course for convenience sake, this IoT device will simply be a Docker
container running Raspbian so that the dev team may have an easily
reproducible IoT environment to test with.

Automated Testing

Automated testing for such an extension will be done leveraging Mocha and its
unit testing functionality. Such tests will be ran automatically before the new
code is pushed to production to verify that the code will function as expected
once deployed.

Regression Testing

Regression Testing will be done every time a new build is created to make sure
that changes to the code do not break the existing functionality. This testing
will be done by executing all unit tests and verifying that they pass.

6

Non-functional Testing

Much of the non-functional testing will be done manually, as it is difficult to measure
many of these qualities with any sort of tool. For example, ensuring ease of use is not really
something that we can test with a piece of software.

Looking specifically at ‘IoT Deployment Service’, it should be fairly simple to manually
ensure that our API is easily extensible and easy to utilize. Supportability requirements are
similar in this aspect, as it will be fairly telling to us that our systems do not work on the
necessary systems should our testing environment stop working properly. In establishing that
the service meets our standards for reliability, we will aim to be able to utilize load balancing
techniques. Finally, as was previously stated, we will be utilizing HTTPS to guarantee secure
data transmission, something that will be a simple process to test for.

Looking at ‘IoT Deployment Manager’, we see only a few differences. With regard to
reliability, we will likely utilize a sort of heartbeat testing to confirm the uptime of the service.
Finally we will be able to manually test the effectiveness of our authentication method,
whether it be a whitelist or the use of an RSA key pair.

Implementation Issues and Challenges

Extending an already existing system, one that we did not create in the first place,
certainly comes with its challenges. First, we had to gain much knowledge about the state of
the existing system to even begin to think about how we would implement an extension to it.
This learning period took up a sizeable amount of time, as at first we had to meet with the
previous contributors on the project to get an idea about its functionality, and we then had to
see and discover the functionality that they had mentioned for ourselves. This is because
simply gathering information about the existing system did not give us a great enough insight
into the state of the project to actually begin designing. That level of insight came when we
began to deploy the existing system and play around with its functionality.

Beyond the fact that we are performing an extension to a system that we did not
create in the first place, we also had issues coming up with a design for the ‘IoT Deployment
Service’ and ‘IoT Deployment Manager’ themselves, as they were fairly foreign concepts for
most of the team. The biggest issue with designing such an extension is that we have to
further prioritize security, more so than when using an existing deployment service such as
Heroku or AWS which already guarantees such security. At first our ideas for the extension
fell along the lines of a sort of SSH client that the user would be able to access and use to
deploy their instances. The issue with this is pretty clear, having SSH access open to the public
can lead to a potential breach allowing the malicious user full access to the device. By having
our own service run on the instance, the ‘IoT Deployment Manager’, we can simply create an
endpoint that only fields requests to control the instance via a secure connection with the ‘IoT
Deployment Service’, taking away the need to access the full range of commands on the
device (which could be done via SSH). This way is also safer for the client as they do not have
to pass off SSH credentials to our service to be stored and used whenever deployment
activities are executed.

7

With some minor hiccups along the way, our design did not come easily but we believe
that it will be a viable solution to our client’s problem.

Conclusion

The extension design that we have laid out above should provide a much needed way
for DevOps engineers to deploy their services to the IoT devices of their choosing, while also
keeping usability simplistic and reliability and security ensured. Such an extension to the
existing DevOps framework, hammer-io, should boost its enterprise compatibility, forcing it
into the ever growing IoT space and allowing for our clients leverage it for a solution of their
choosing.

Overall, the extension should affect the hammer-io project as whole in a very positive
manner, granting new clients and old the ability to automate their IoT service deployment.

References

Github: https://developer.github.com/v4/
Hammer-IO: http://sdmay18-19.sd.ece.iastate.edu/docs/
Heroku: https://devcenter.heroku.com/categories/platform-api/
Mocha: https://mochajs.org/api/mocha/
NodeJS: https://nodejs.org/en/docs/
NPM: https://docs.npmjs.com/
Docker: https://docs.docker.com/

8

https://developer.github.com/v4/
http://sdmay18-19.sd.ece.iastate.edu/docs/
https://devcenter.heroku.com/categories/platform-api/
https://mochajs.org/api/mocha/
https://nodejs.org/en/docs/
https://docs.npmjs.com/
https://docs.docker.com/

