
Hammer-io IoT Extension
Final Report

Team ​: sddec19-24

Members ​:
Matt Bechtel
Yussef Saleh
Brett Wilhelm
Chakib Ahlouche
Ahmed Sobi

Email ​: ​sddec1924@gmail.com
Website ​: ​sddec19-24.sd.ece.iastate.edu

mailto:sddec1924@gmail.com
http://sddec19-24.sd.ece.iastate.edu/

Table of Contents

Introduction 3
Project Statement 3

Goal 3

Term Definitions 4

Design 5
Requirements For the IoT Extension (IoT Deployment Service and Manager) 5

Functional Requirements 5
Non-Functional Requirements 5
Engineering Assumptions/Constraints 5

Design Overview 6

Use Case Diagram For the Extension 6

Component Diagram 7
Component Definitions 8

IoT Deployment Manager ***New*** 8

IoT Deployment Service ***New*** 8

Yggdrasil 8

Endor 8

Koma 8

Implementation Details 9
Technical Stack 9

Programming Languages 9

Frameworks 9

Database 9

Other utility libraries 9

Extension Implementation Definitions 10
IoT Deployment Service 10
IoT Deployment Manager 10

Implementation Issues and Challenges 11
Packaging Issues 11

UI Issues 11

Deployment Logging Issues 11

Open Issues 12

UI 12

Packaging 12

Deployment Logging 12

1

Further cloud integration (AWS) 12

Testing 13
Functional Testing 13

Manual Testing 13

Automated Testing 13

Regression Testing 13

Non-functional Testing 14

Testing Standards 14

Testing Results 15

Operation Manual 16
IoT Deployment Service 16

IoT Deployment Manager 21
Happy Path IoT Deployment Scenario 23
Manual for original parts of the Hammer-io System 24
Tyr 24

Endor 28

Koma 29

Skadi 30

Yggdrasil 32

2

Introduction

Project Statement
The problem that has prompted this project is the need to extend the existing Hammer-io
system to support the deployment of software to our client’s IoT devices. Some caveats come
with this problem though, such as the restriction that the IoT deployment can only rely on the
fact that the IoT device is running some sort of Linux. With this requirement comes the
request that we support a wide range of IoT devices. Thus we cannot expect to be able to
leverage the power of virtualization technologies, such as Docker, as they take up too much
of the device’s resources.

Goal
The goal of the project is to provide an extension to the current DevOps system, Hammer-io,
that will allow clients to deploy their services to the IoT device of their choosing. As of now,
the system only allows deployment via Heroku, so we will have to deliver an extension to
Hammer-io that allows for the deployment of software to IoT devices. This extension will be
in the form of the new services, the ‘IoT Deployment Service’ and the ‘IoT Deployment
Manager’. These new services will add on to the existing microservices architecture of the
Hammer-io system, and once integrated, should allow for clients to use Hammer-io to push
and deploy services to their desired IoT device. The two new services will work in conjunction
to provide this new functionality, with the ‘IoT Deployment Service’ running alongside the
rest of the Hammer-io system in a microservices architecture, and the ‘IoT Deployment
Manager’ running on the actual IoT device.

The ​deliverables ​will be as mentioned above, the extended Hammer-io system with the new
services ‘IoT Deployment Service’ and ‘IoT Deployment Manager’ added to provide the
needed IoT deployment functionality to the client.

3

Term Definitions
See the references at the end for official documentation of given technologies

● API
○ Application Programming Interface

● Docker
○ A virtualization technology

● Express
○ lightweight web framework for NodeJS that provides easy set up and

extensibility
● Git

○ Version control software
● Hammer-io

○ Existing senior design project that we are extending
● Heroku

○ An enterprise deployment service that is used by the existing Hammer-io
system

● IoT Device
○ ‘Internet of Things’ Device, this term is fairly broad and usually refers to a low

weight device (such as a raspberry pi) that is connected to the internet. In this
Project Plan we will narrow this term a bit defining it as a low resource device
that runs Linux, and in particular does not have enough resources to perform
virtualization with a technology such as Docker.

● Linux
○ Operating system

● Microservices
○ A type of software architecture that involves making logical splits between

components such that each component is loosely coupled with the others in
the system. Typically each component (service) in the system is stateless,
relying on a data store to house information pertinent to system, this allows for
each component (service) in the system to be scaled as needed. The existing
Hammer-io system is built using a microservices architecture, our new
components will simply add to it.

● NodeGit
○ Library for NodeJS that provides an API to Git commands

● NodeJS
○ Javascript for the backend

● Repository
○ In this paper when we mention repository, we mean a Git repository.

4

Design

Requirements For the IoT Extension (IoT Deployment
Service and Manager)

Functional Requirements

● Extension adds IoT Deployment functionality to the Hammer-io system.
● User can deploy software from their repository on their IoT device using the

Hammer-io system.
● The implementation should utilize the existing user access functionality provided by

Endor to authenticate deployment requests, making sure that only users who own a
given repository or device can perform deployments with them.

● Deployment functionality should be available via the UI or via a CI route using Git
Hooks.

● UI should be extended to provide the user easy access to all IoT deployment
functionality.

● API endpoints should require a valid user token to perform any action.

Non-Functional Requirements

● API should be developer friendly with documentation for easy use (swagger docs).
● API should respond with correct error codes and messages.
● Hammer-io system should be able to be easily distributed via source code for each

service and via docker images with an accompanying Docker Compose script (this
allows for the standing up of the cloud services via a single command and a mounted
configuration file).

Engineering Assumptions/Constraints

● IoT Device
○ The IoT device is a Linux device that is connected to the internet at an address

that is addressable by the IoT Deployment Service.
○ The IoT device is owned by the user and has the IoT Deployment Manager

actively running on it.
○ The IoT device does not have enough resources to perform virtualization, thus

the usage of Docker is unavailable.

5

Design Overview
The Hammer-io system with our extension is comprised of 5 services: IoT Deployment Service,
IoT Deployment Manager, Endor, Koma, and Yggdrasil. The following diagrams and
descriptions should give a good overview of the functionality and components of the system.

Use Case Diagram For the Extension

6

Component Diagram

7

Component Definitions

IoT Deployment Manager ***New***

The Deployment Manager will run on the user’s device and receive deployment requests
directly from the associated Deployment Service. The manager will authenticate all requests
with the Deployment Service, ensuring that the token in the request belongs to the user who
owns the device they are attempting to deploy to. Once authenticated, the manager will
execute the user-provided start script within the repository to start the software. Once
running, logs produced by the running software (the deployment) will be sent to Koma for
aggregation.

IoT Deployment Service ***New***

This is a new service adding functionality for IoT deployment. This service will be hit directly
by the user to perform deployments to a given IoT device. It will authenticate all inbound
requests with the user access endpoints provided in Endor. The service will communicate with
IoT Deployment Manager running on the user’s IoT device to perform deployments of the
user’s software. The service will be responsible for storing deployment records, repository
information, and device information.

Yggdrasil

User Interface. Surfacing all of the system’s functionality in usable manner. Yggdrasil was
built by the previous team.

Endor

Existing backend web service built to handle all user management and authentication. Also
handles existing cloud deployment requests, which involves the storing of a user’s credentials
and direct contact with cloud services such as Heroku to facilitate deployments.

Koma

Data aggregation service for all deployed instances. Collects log and OS data.

8

Implementation Details

Technical Stack

Programming Languages

● JavaScript was used to implement all of the services in the Hammer-io system

Frameworks

● Backend
○ The NodeJS Express framework was used for all of our backend services, both

in the original Hammer-io system and the extension.
● Frontend

○ ReactJS was used for the creation of the UI

Database

● Relational Database
○ Dialect

■ PostgreSQL
○ ORM

■ Sequelize was used to facilitate all DB connections (NodeJS ORM for
SQL)

● NOSQL Database
○ Google’s Firebase

■ We utilize Firebase for ‘real-time’ access to particular data (in particular
for logs from running deployments and os data)

■ Firebase also allows for the UI to directly connect to the datastore
instead of having to hit one of our backend services to perform the
query

Other utility libraries

● Nodegit
○ The Nodegit library is what we used within the IoT Deployment Manager to

interface with the client’s git repository.
● Request

○ The Request package allows us to easily communicate across services, this is
what is used in the IoT Deployment Service to proxy a given deployment
request to a user’s device.

9

Extension Implementation Definitions

IoT Deployment Service

Backend web server written using NodeJS and the Express framework. This service will run
alongside the existing Hammer-io system in the cloud and will serve as the deployment ‘hub’
for all IoT Deployments. The service will manage information about each user’s repositories,
devices, and deployments in a PostgreSQL database with the Sequelize ORM. A deployment
will be performed via a combination of a repository and devices. This means that a user will
perform an IoT deployment by 1) adding a repository they wish to deploy 2) adding a device
they wish to deploy to 3) making a deployment request as a function of those two things. The
actual running of the software, the actual deployment, will be done by the IoT Deployment
Manager which will be running on the client’s IoT device, so the service will simply verify a
user owns a given set of devices then proxy those requests to the requested devices. So, for
example, a user could add a repository and a bunch of devices, they would be able to, with
one request, deploy that repository to all of those devices by simply sending a valid token, a
repository ID, and a list of device IDs to the IoT Deployment Service.

IoT Deployment Manager

The IoT Deployment Manager was also built using NodeJS and the Express framework. The
manager runs on the client’s IoT devices and facilitates the actual deployment functionality.
To do this, without virtualization such as Docker, the manager uses the Nodegit library to
interface directly with the clients remote Git repository. The manager receives requests from
the IoT Deployment Service to perform deployments. These requests contain the repository
credentials as well as the script provided by the user in order to start the software in the
repository. So a deployment on the manager side will go a bit like this, it receives a request to
perform a deployment it then 1) verifies ownership of the device and the validity of the token
with the IoT Deployment Service 2) uses the credentials in the request to clone the user’s Git
repository 3) runs the contents of the start script with the new repository as the working
directory 4) manages the software’s processes in order to allow for the stopping of a
deployment via a request or failure 5) responds to the IoT Deployment Service with success or
error message.

10

Implementation Issues and Challenges

Packaging Issues

We were planning to containerize 4 of our systems (Yggdrasil, Endor, Koma and
IoT-Deployment-Service) in order to make the Hammer-io system easy to distribute and use.
We focused on the packaging of the system, specifically in regard to the distribution of
Docker images, for each of our services. We wrote a Docker Compose script that was
supposed to allow users to stand up the cloud portion of the system (Yggdrasil, Endor, Koma,
IoT-Deployment-Service). This script was also to pull down the new docker images from
Docker Hub, mount the user’s configuration, and then start the services on a Docker network.
After writing the yml files we faced a lot of problems. The system didn’t respond and connect
on the hub and we didn’t have time to focus on fixing these issues as we had other priorities.

UI Issues

As the previous development group had created a web-based GUI for interfacing with the
system, we had originally decided to extend that UI to include support for the functionality
that we were adding. Unfortunately, this addition was postponed near the end of our
development time to be continued by a future development group working on Hammer-io.
Due to a combination of poor time-management and some personal issues the UI team was
going through at the time, progress was slower than it should have been and ultimately the
extension was shelved in favor of finalizing the completable aspects of the project. As it does
seem that development of Hammer-io and the extension will continue, this will likely be one
of the first things to be completed.

Deployment Logging Issues

Our original plan was to collect the right logs in the data aggregator Koma from the deployed
software, but during the integration there were many challenges, such as: the inability to
know exactly what data to collect from the deployment manager, not a very in-depth
understanding of the data aggregator code done by our predecessors, ambiguous data
packaging and grouping in Koma which resulted in a hard time constructing good and
understandable tables in Firebase data storage. Although documentation of the data
aggregator was good, it was not enough to use Koma accordingly, and to integrate the
Service/Manager piece to it.

11

Open Issues
*** These will be passed off to the next team ***

UI

The IoT Deployment UI was not completed this semester but still needs to be implemented
for the system to be in a usable state (no user really just wants to make API calls directly). This
was planned to be an extension of the existing UI Yggdrasil.

Packaging

The full packaging of the cloud portion of the Hammer-io system (Endor, Koma, Yggdrasil, IoT
Deployment Service) still needs to be done to allow for easy environment stand up for the
client.

Deployment Logging

As of now the deployments made by the Service and the Manager do not collect logs and
store them for the client. We got a bit of a start on this but were not able to complete it. The
next team should implement this to finish the IoT Deployment suite of Hammer-io.

Further cloud integration (AWS)

Our client mentioned that this system should also integrate with other cloud providers
beyond Heroku, specifically AWS. We did not have time to implement this functionality so this
will be left to the next team.

12

Testing

Functional Testing

Manual Testing

Much manual testing was done to verify the functionality of our
extension, because of the nature of it. Such a thing was a bit hard to test using automated
testing methods, especially for the integration portion of it. We performed automated
regression testing on the existing system (tests developed by the previous team) to make
sure that our newly added pieces to Endor, Koma, and Yggdrasil do not break any
functionality, but beyond that we went through the use cases of our extension manually to
verify that the functionality of the system is what is expected. This manual testing involved
standing up the Hammer-io system, with our extensions active, and performing a deployment
onto an IoT device. Of course for convenience sake, this IoT device was going to be a Docker
container running Raspbian so that the dev team may have an easily reproducible IoT
environment to test with.

Automated Testing

Automated testing for the original system was done leveraging Mocha and its
unit testing functionality. Such tests were ran automatically before the new
code is pushed to production to verify that the code will function as expected once deployed.
We did not have time to implement unit tests/automated testing for the extension.

Regression Testing

Regression Testing was done every time a new build is created to make sure that changes to
the code do not break the existing functionality. This testing was done by executing all unit
tests and verifying that they pass.

13

Non-functional Testing
Much of the non-functional testing was done manually, as it is difficult to measure many of
these qualities with any sort of tool. For example, ensuring ease of use is not really something
that we can test with a piece of software.

Looking specifically at ‘IoT Deployment Service’, it was fairly simple to manually ensure that
our API is easily extensible and easy to utilize. Supportability requirements are similar in this
aspect, as it was fairly telling us that our systems do not work on the necessary systems
should our testing environment stop working properly. In establishing that the service meets
our standards for reliability, we researched load balancing techniques. In general these load
balancing techniques are external to the deliverables, but as long as the system is stateless
and data driven it is easily load balanced (the IoT Deployment Service is both of those things).

Looking at ‘IoT Deployment Manager’, we see only a few differences. With regard to
reliability, we built endpoints on the manager to allow the user, and the IoT Deployment
Service, to ‘ping’ their device. Finally for security testing we simply played the role of a
malicious user trying to make unauthenticated requests.

Testing Standards
● Unit Tests

○ Each commit pushed to the remote repository should contain unit tests that
correspond to the functionality added in that commit

○ The author of the new commit is also responsible for producing unit tests for
its functionality. In order to pass code review, these tests must be verified by
the reviewer to cover every line of the new code (100% code coverage).

● Integration Tests
○ For each new component we will require that there be tests written to verify its

functionality in the system as a whole. These were important markers for how
the system will function once deployed.

● System and Acceptance Testing
○ Manual testing by developers was the standard for System Testing. This will

take place upon merging new code and upon completion of major portions of
functionality.

○ Product demos to the client was the standard for Acceptance Testing. These
take place on a weekly basis at the team meeting.

● Code Coverage
○ To verify that our unit tests cover every line of code, we leveraged the built in

Intellij code coverage tool.

14

Testing Results
The kind of testing that we performed, manual, unit, integration, and regression led to a
multitude of results. Specifically, manual testing told us how the system looks from a user
perspective, allowing us to verify non-functional requirements such as ease of use. The unit
tests gave us insight into which pieces of functionality were working and when at a local scale,
allowing us to see if we had broken a given method’s functionality with new commits. Integration
testing was a bit difficult as it could only be performed at the end of the semester manually when
the extension was nearly complete (this also functioned as acceptance testing). We showed the
client our system functionality as a whole and received their approval. Regression testing
resulted in knowledge about the past and present of the system, showing us whether a new
addition to any service had broken previous functionality. This is similar to unit testing and was
provided by the previous team.

15

Operation Manual
All repositories reside under the group in Git Lab ​https://git.ece.iastate.edu/sddec19-24​

IoT Deployment Service
First, clone the repository and step into the iot-deployment-service directory.

For the IoT Deployment Service to function properly, other parts of the system must be
running and active. These dependencies include a Postgres database (on port 5432), Endor,
and Koma. Also to perform any deployments, the IoT Deployment Manager must be active
wherever the client wishes to deploy their software. Once the system dependencies are met,
one will have to install all of the dependent packages of the service by running the command
‘​npm install​’, if node or npm is not installed, please install it first otherwise this command will
not work. The ‘​npm install​’ command will read the ‘package.json’ file within the project and
download the dependent packages.

Next, we’ll need to configure the database connection by placing a JSON configuration file
within the ./config directory in the service. This file will contain the database url and
credentials and will allow the Sequelize ORM to initialize the connection and manage the
data. Here is the basic format of the required JSON file:
{
 "development": {
 "username": "root",
 "password": null,
 "database": "database_development",
 "host": "127.0.0.1",
 "dialect": "postgresql"
 },
 "test": {
 "username": "root",
 "password": null,
 "database": "database_test",
 "host": "127.0.0.1",
 "dialect": "postgresql"
 },
 "production": {
 "username": "root",
 "password": null,
 "database": "database_production",
 "host": "127.0.0.1",

16

https://git.ece.iastate.edu/sddec19-24

 "dialect": "postgresql"
 }
}.
For more information about the above format see the Sequelize documentation
https://github.com/sequelize/cli/blob/master/docs/README.md

To start the system once the dependencies are met and the DB configuration is set, one must
set some environment variables in the context to configure the service. These environment
variables and their options include:

● LOG_MODE
○ This variable can be set to 3 modes depending on the context the user would

like to use the system in. ‘info’ for logging all information statements, ‘error’
for only logging error statements, and ‘debug’ for logging everything.

● ENDOR_URL

○ This variable must be set in order for the IoT Deployment Service to
communicate with Endor. Endor will be used for all user management, so when
a request comes into the deployment service it will use this address to call off
and verify the user’s credentials.

Once the above environment variables are set to the desired values, the IoT Deployment
Service can be started by running the command ‘​npm start​’. If the service successfully
connected to the database you should see some SQL in the log output (this is Sequelize
setting up the models and making sure the ORM is initialized). If any database connection
issues occur, make sure the database is running and you have created the database
configuration file for Sequelize.

17

https://github.com/sequelize/cli/blob/master/docs/README.md

On successful startup of the service, you will have access to the following API:
● Device

○ Create device
■ Method

● POST
■ Url

● /device
■ Body

● Device object
○ deviceName
○ ipAddress
○ Active

○ Update device
■ Method

● PUT
■ Url

● /device
■ Body

● Device object with id
○ id
○ deviceName
○ ipAddress
○ Active

○ Delete devices
■ Method

● DELETE
■ Url

● /device
■ Body (search criteria)

○ Search devices
■ Method

● GET
■ Url

● /device
■ Body (search criteria)

○ Ping
■ Method

● GET
■ Url

● /device/ping
■ Body (search criteria)

18

● Repository
○ Create Repository

■ Method
● POST

■ Url
● /repository/

■ Body
● Repository object

○ repositoryName
○ gitHttpAddress
○ gitUsername
○ gitPassword

○ Search repositories
■ Method

● GET
■ Url

● /repository
■ Body (search criteria)

○ Update repository
■ Method

● PUT
■ Url

● /repository/
■ Body

● Updated repository object with id
○ repositoryName
○ gitHttpAddress
○ gitUsername
○ gitPassword

19

● Deployment
○ Start deployments

■ Method
● POST

■ Url
● /deployment

■ Body
● repositoryId
● deviceIds (list)

○ Stop deployments
■ Method

● POST
■ Url

● /deployment/stop
■ Body

● deploymentIds (list)
○ Search deployments

■ Method
● GET

■ Url
● /deployment

■ Body (search criteria)

*** In the above API search criteria refers to whatever fields of that object the user is looking
for, for example, on a device, search criteria could include “active”:true which would then
result in the returning of all device records for the given user where the field “active” is set to
true. ***

*** All requests in the above API require a valid token in the header which can be gathered by
registering an account with Endor and then logging in. The IoT Deployment Service
authenticates all requests against Endor. With that, the above API is user specific, that means
each route will only allow the user to access records/things that they ‘own’ or have previously
added to the system ***

20

IoT Deployment Manager
First, clone the repository and step into the iot-deployment-manager directory.

For the IoT Deployment Manager to function, the instance of the IoT Deployment Service that
the manager is associated with must be active and reachable. The address for the IoT
Deployment Service must also be provided in the environment. To use the IoT Deployment
manager, you will need to install NodeJS on the device you wish to deploy to and then you
will run the command ‘​npm install​’ to download all of the system’s dependencies. Once the
associated IoT Deployment service is active and reachable, and the manager has all of
dependencies set, some environment variables need to be set in the context in order to
configure the system. These environment variables and their options include:

● LOG_MODE
○ ​This variable can be set to 3 modes depending on the context the user would

like to use the system in. ‘info’ for logging all information statements, ‘error’
for only logging error statements, and ‘debug’ for logging everything.

● DEPLOYMENT_SERVICE_URL

○ This should be set to the url of the deployment service to which the device that
the manager is running on is associated. This allows the manager to verify
device ownership (authenticate incoming requests).

With the environment variables set, the command ‘​npm start​’ should be ran to start the
manager. Once the manager is active on the device, it should be able to be registered with the
IoT Deployment Service as a ‘device’. Upon successful registration of the device, one should
then be able to perform deployments by making requests to the IoT Deployment Service API,
which will then proxy those requests to the correct devices, running an instance of the IoT
Deployment Manager.

21

The following API that is provided by the IoT Deployment Manager will be used directly by the
IoT Deployment Service:

● Deployment Manager
○ Start deployment

■ Method
● POST

■ Url
● /deploymentManager/deploy

■ Body
● Hydrated deployment record (this is generated by the IoT

Deployment Service when a deployment is requested)
○ Repository record
○ Device record
○ Deployment record

○ Stop deployments
■ Method

● POST
■ Url

● /deploymentManager/stop
■ Body

● deploymentIds (list)
○ Get active deployments

■ Method
● GET

■ Url
● /deploymentManager/status

○ Ping
■ Method

● GET
■ Url

● /deploymentManager/ping

*** All requests in the above API require a valid token in the header which can be gathered by
registering an account with Endor and then logging in. The IoT Deployment Manager
authenticates all requests against the IoT Deployment service to make sure that 1) the
provided token is valid 2) the owner of the token also owns the device their deploying to. ***

22

Happy Path IoT Deployment Scenario
● PostgreSQL DB, Endor, Koma, IoT Deployment Service are all active
● IoT Deployment Manager is active on the device they wish to deploy to
● User creates a hammer-io account with Endor
● User logs in with the new account’s credentials to receive a token. This token will be

used to authenticate subsequent requests.
● The user adds the repository they wish to deploy to their account by hitting the

‘Create Repository’ endpoint with the following information in the body
○ gitUsername
○ gitPassword
○ gitHttpAddress
○ repositoryName
○ startScript

● The user adds a device that has an instance of the IoT Deployment manager running on
it. This is done by hitting the ‘Create Device’ POST endpoint on the IoT Deployment
Service with the following information about the device in the body:

○ deviceName
○ ipAddress

● Once both a device and repository are added to the system, a deployment may take
place as a function of those two things. To perform a deployment the user should hit
the ‘Start Deployments’ POST endpoint on the IoT Deployment Service with the
following information in the body:

○ repositoryId
○ deviceIds (list)

● The above request, when successful, will search the db for the repository and device
ids provided, and will proxy a deployment request to each device with the correct
repository information (to each IoT Deployment Manager).

● The software then started deployment request will be active on whatever device was
deployed to (will be actively managed by an instance of the IoT Deployment Manager).

● All deployments can be managed via the IoT Deployment Service API.

23

Manual for original parts of the Hammer-io System
*** What follows was made by the previous team. The original can be found here:
https://sdmay18-19.sd.ece.iastate.edu/docs/Final_Report_Spring_2018.pd​f​ in Appendix I***

This appendix provides instructions for setting up, testing, and running the Hammer-IO
system. It is composed of five distinct subsystems: Tyr, Endor, Koma, Skadi, and Yggdrasil.
They are presented in that order because it makes the most sense to test and run them in
that order. For example, Endor is dependent upon Tyr, so it is outlined after Tyr. Likewise,
Yggdrasil is dependent on the other four subsystems, so it is outlined last.

The instructions here present a subset of the development documentation written for
each system. It does not include, for example, the deployment documentation. The
complete, up-to-date documentation for each system can be found in its respective
README.md file and supporting documents in each code repository. The links to each
system’s README are provided for reference.

Tyr

For complete and up-to-date instructions, please refer to the
documentation at
https://github.com/hammer-io/tyr/blob/master/README.md​.

Setup

Prerequisites

Before you can use Tyr, you need to make sure you've done the following:
1. Create a GitHub account (​https://github.com/​). At this current stage of

development, GitHub is the default version control platform for storing and
managing your code.

2. Ensure that you linked your TravisCI account to your GitHub account.
3. Create a Heroku account (​https://signup.heroku.com/​). At this current stage of

development, Heroku is the default web hosting service.
4. After creating a Heroku account, visit the following link to find your API key:

https://dashboard.heroku.com/account​. Make sure to copy it, as you'll need it
to sign in to Heroku.

24

https://sdmay18-19.sd.ece.iastate.edu/docs/Final_Report_Spring_2018.pdf
https://sdmay18-19.sd.ece.iastate.edu/docs/Final_Report_Spring_2018.pdf
https://github.com/hammer-io/tyr/blob/master/README.md
https://github.com/hammer-io/tyr/blob/master/README.md
https://github.com/
https://signup.heroku.com/
https://dashboard.heroku.com/account
https://dashboard.heroku.com/account

Installation

CLI Usage

Tyr can be used from the command line or as an imported module. The command line usage is
described as follows:

Options:

● -V, --version output the version number
● --config <file> configure project from configuration file (see more below)
● --logfile <file> the filepath that logs will be written to
● -h, --help output usage information

Configuration File (.tyrfile)
Project Configurations

Name Required Note

projectName Yes Must be a valid directory name and cannot be a directory
that already exists.

description Yes

version No Must match ​(number)(.number)*

author No For multiple authors, use comma-separated values

license No

25

Tooling Choices

Name Required Description Valid Choices

ci Yes The Continuous Integration
tool you want to use

<None>,​ TravisCI

containerization Yes The Containerization tool you
want to use

<None>,​ Docker

deployment Yes The deployment tool you
want to use

<None>,​ Heroku

sourceControl Yes The source control tool you
want to use

<None>,​ GitHub

web Yes The web framework you want
to use

<None>, ​ExpressJS

test Yes The test framework you want
to use

<None>, ​Mocha

orm Yes The Object-relational Mapping
framework you want to use

<None>, ​Sequelize

● If Source Control Choice is ​<None>​, then CI Choice, Containerization
Choice, and Deployment Choice must also be ​<None>​.

● If CI Choice is ​<None>​, then Containerization Choice and Deployment Choice
must also be ​<None>​.

● If Containerization Choice is ​<None>​, then Deployment Choice must also be ​<None>​.

26

File Format

The configuration file should have the ​.tyrfile​ extension. Its contents should be in
JSON format and should contain the following:

{
projectConfigurations:

{

projectName: '{project name}',

description: '{project description}',

version: '{version number}',

author: ['author1', 'author2', ...],
license: '{license}'
},

toolingConfigurations:

{

sourceControl: '{source control choice}',

ci: '{ci choice}',

containerization: '{containerization choice}',
deployment: '{deployment choice}',
web: '{web framework choice}',
test: '{test framework choice}',
orm: '{orm framework choice}'
}

}

27

Endor
For complete and up-to-date instructions, please refer to the
documentation at
https://github.com/hammer-io/endor/blob/master/README.md​.

Installation

Installation for Development

1. git clone https://github.com/username/endor
2. npm install
3. Setup the configuration file

○ Duplicate ​config/default-example.json​ into a new file
config/default.json

○ Fill in any necessary information (either create new accounts or ask an owner)
○ For development and testing, create an Ethereal account to mock the

email service. Fill in the email section of the configuration file with this
information.

4. Generate the documentation html files
○ apidoc -i src/ -o docs/
○ NOTE: You must first have apidoc installed. ​npm install apidoc -g

5. Setup the database
○ Run ​npm run createDB && npm run initDB​ to create the database and

initialize the tables within it.
6. You're all set!

Usage

apidoc -i src/ -o docs/​ Generate the documentation html
npm start Starts the API server on localhost:3000
npm test Runs the test suite
npm run lint Runs the linter

28

https://github.com/hammer-io/endor/blob/master/README.md

Koma
For complete and up-to-date instructions, please refer to the
documentation at
https://github.com/hammer-io/koma/blob/master/README.md​.

Setup

1. Run ​git clone https://github.com/hammer-io/koma​ to clone the repository
2. Run ​cd koma​, then ​npm install
3. Setup your Firebase database

○ Create an account at​ ​https://firebase.google.com/
○ Create a Firebase project with Realtime Database
○ In the Realtime Database panel, add a new key-value pair ​"Test": "Test"​. You

can remove this later after the database is populated with some actual data. If
you don't add some initial data, the database won't be saved and you'll have to
create another new one.

○ Edit the Realtime Database rules, replacing with the contents of
firebase-rules.json

○ In the ​Authentication -> Sign-in Method​ panel, enable the Email/Password
provider and configure any authorized domains

4. Update the configuration file for development
○ Configuration files are located in the ​config/​ folder
○ Copy ​default-example.json​ file to ​default.json​.
○ Replace ​firebase.databaseUrl​ with the URL to your Firebase database.
○ Replace ​firebase.serviceAccount​ with the Service Account which is

downloaded in Firebase underneath ​Project Settings -> Service
Accounts -> Firebase Admin SDK -> Generate New Private Key

5. Generate the documentation html files
○ apidoc -i src/ -o docs/
○ NOTE: You must first have apidoc installed. ​npm install apidoc -g

6. Initialize your MySql database by running ​npm run initTestDB

Usage

npm start Starts the web server
npm test Runs the unit tests
npm run lint Runs the linter

29

https://github.com/hammer-io/koma/blob/master/README.md
https://firebase.google.com/

Skadi
For complete and up-to-date instructions, please refer to the
documentation at
https://github.com/hammer-io/skadi/blob/master/README.md​.

Setup

Create a ​.skadiconfig.json​ file in the directory where you are launching your application
from.

Usage

Heartbeat

With ​heartbeatUrl​ in the ​.skadiconfig.json​ file, add the following snippet after your
imports.

OS Data

With ​osDataUrl​ in the ​.skadiconfig.json​ file, add the following snippet after your imports.

30

https://github.com/hammer-io/skadi/blob/master/README.md

HTTP Data

To capture incoming requests, add the following snippet before your routes.

To capture outgoing responses, add the following snippet after your routes.

31

Yggdrasil
For complete and up-to-date instructions, please refer to the
documentation at
https://github.com/hammer-io/yggdrasil/blob/master/README.md​.

Setup

Clone the project onto your computer and install dependencies:

Before running, make sure you’ve done the following:
● Install, configure, and start Endor
● Install, configure, and start Koma
● Configure the application

○ cp config/default-example.json config/development.json
○ Fill in the development config. For third-party client IDs, ask the project owners

or create your own accounts for each.
○ Firebase configs

■ The Firebase instance should be the same one created for Koma
(see instructions for creating a new Firebase instance below in the
Koma section of this Appendix)

■ On the project overview page, click "Add Firebase to your web app"
■ Copy the configs, convert it to JSON, and put it in the

config/development.json​ file
■ When testing for development, you need to make sure to register a

new user through the application sign-up process. This will
authenticate the user with firebase. None of the test users (e.g.
jreach) are setup with firebase, and the application will not work
correctly for them.

Usage

npm start Starts the development web server
npm run lint Runs the linter

32

https://github.com/hammer-io/yggdrasil/blob/master/README.md

References

Docker: ​https://docs.docker.com/
Github: ​https://developer.github.com/v4/
Hammer-io: ​http://sdmay18-19.sd.ece.iastate.edu/docs/
Hammer-io Design Document: ​https://hammer-io.github.io/docs/Design_Document_v2.pdf
Heroku: ​https://devcenter.heroku.com/categories/platform-api/
Mocha: ​https://mochajs.org/api/mocha/
NodeGit:​ ​https://www.nodegit.org/api/
NodeJS: ​https://nodejs.org/en/docs/
NPM: ​https://docs.npmjs.com/
Previous Team: ​https://sdmay18-19.sd.ece.iastate.edu/docs/Final_Report_Spring_2018.pd​f
Sequelize: ​https://sequelize.org/v5/

33

https://docs.docker.com/
https://developer.github.com/v4/
http://sdmay18-19.sd.ece.iastate.edu/docs/
https://hammer-io.github.io/docs/Design_Document_v2.pdf
https://devcenter.heroku.com/categories/platform-api/
https://mochajs.org/api/mocha/
https://www.nodegit.org/api/
https://nodejs.org/en/docs/
https://docs.npmjs.com/
https://sdmay18-19.sd.ece.iastate.edu/docs/Final_Report_Spring_2018.pdf
https://sdmay18-19.sd.ece.iastate.edu/docs/Final_Report_Spring_2018.pdf
https://sequelize.org/v5/

