
DevOps for IoT:
A Hammer-io Extension

Team: sddec19-24 (http://sddec19-24.sd.ece.iastate.edu/)
Members: Matt Bechtel, Brett Wilhelm, Yussef Saleh, Ahmed Sobi, Chakib Ahlouche
Client/Advisor: Lotfi Ben-Othmane

● Problem
○ The existing Hammer-io system allows for the deployment of a

user’s application to a cloud service (namely Heroku), but doesn’t
allow for deployment to low resource IoT devices, devices that
cannot perform virtualization and are assumed to be owned by the
client.

● Solution
○ Add two new services to the Hammer-io system, the IoT

Deployment Service and IoT Deployment Manager. The service will
run alongside the rest of the system, in the cloud, and the manager
will run on each device the user desires to deploy to. The service
and the manager will work in tandem to run the clients software
directly from their git repository without the use of virtualization
technologies such as Docker.

The Extended Hammer-io System
Component Diagram

Component Definitions
● Endor

○ Existing backend web service built to handle all user management and authentication.
Also handles existing cloud deployment requests, which involves the storing of a user’s
credentials and direct contact with cloud services such as Heroku to facilitate
deployments.

● Koma
○ Data aggregation service for all deployed instances. Collecting log and OS data.

● Yggdrasil (React frontend)
○ User Interface. Surfacing all of the systems functionality in usable manner. Yggdrasil

was built by the previous team and was extended upon to add pages for IoT deployment.
● IoT Deployment Service

○ New service adding functionality for IoT deployment. This service will be hit directly by
the user (UI) to perform deployments to a given IoT device. This service will authenticate
all inbound requests with the user access endpoints provided in Endor. Service will
communicate with IoT Deployment Manager running on the user’s IoT device to perform
deployments of the user’s software. The service will be responsible for storing
deployment records, repository information, and device information.

● IoT Deployment Manager
○ The Deployment Manager will run on the user’s device and receive deployment requests

directly from the associated Deployment Service. The manager will authenticate all
requests with the Deployment Service, ensuring that the token in the request belongs to
the user who owns the device they are attempting to deploy to. Once authenticated, the
Manager will execute the user provided start script within the repository to start the
software. Once running, logs produced by the running software (the deployment) will be
sent to Koma for aggregation.

Technical Details
● Backend Technologies

○ NodeJS
○ PostgreSQL

● Frontend Technologies
○ React

● Languages
○ Backend/Frontend written in JavaScript

● Source Control
○ Git

Requirements
● Functional Requirements

○ Extension adds IoT Deployment functionality to the
Hammer-io system
■ User can deploy software from their repository on their IoT

device using the Hammer-io system.
■ The implementation should utilize the existing user access

functionality provided by Endor to authenticate deployment
requests, making sure that only users who own a given
repository or device can perform deployments with them.

■ Deployment functionality should be available via the UI or
via a CI route using Git Hooks.

■ UI should be extended to provided the user easy access to
all IoT deployment functionality.

● Non-Functional Requirements
○ API should be developer friendly with documentation for easy

use (swagger docs)
○ API endpoints should require a valid user token to perform

any action.
○ API should respond with correct error codes and messages
○ Hammer-io system should be able to be easily distributed via

source code for each service and via docker images with an
accompanying Docker Compose script (this allows for the
standing up the of the cloud services via a single command
and a mounted configuration file).

● Engineering Assumptions/Constraints
○ IoT Device

■ The IoT device is a Linux device that is connected to the
internet at an address that is addressable by the IoT
Deployment Service.

■ The IoT device is owned by the user and has the IoT
Deployment Manager actively running on it.

■ The IoT device does not have enough resources to perform
virtualization, thus the usage of Docker is unavailable.

Testing
● Unit Testing

○ All middleware functionality is unit tested via the Mocha
framework.

● Integration Testing
○ All API functionality is tested using Postman tests.

● Manual testing
○ All functionality is tested manually alongside integration and

unit tests at the time of the pull request and code review.

Most Relevant Standards
● IEEE-12207: Software life cycle processes

○ This standard defines the processes to be followed throughout a piece of software’s lifecycle
from inception to production to maintenance.

○ This standard was important in influencing the way we went about developing our system.
● IEEE-1619: Standard for Cryptographic Protection of Data on Block-Oriented

Storage Devices
○ We are storing private credentials, so we used this standard as a framework to go about

keeping our user’s data safe and secure.

Project Resources
● https://nodejs.org/en/docs/
● https://sequelize.org/v5/index.html
● https://www.nodegit.org/
● https://www.ieee.org/
● https://sdmay18-19.sd.ece.iastate.edu/

http://sddec19-24.sd.ece.iastate.edu/
https://nodejs.org/en/docs/
https://sequelize.org/v5/index.html
https://www.nodegit.org/
https://www.ieee.org/
https://sdmay18-19.sd.ece.iastate.edu/

